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ON B U I L D I N G  A R H E O L O G I C A L  M O D E L  OF 

C A V I T A T I N G  D I S P E R S I V E  L I Q U I D  M E D I A  

S. V.  S t e b n o v s k i i  UDC 532.135:532.528 

It has been shown in [1] that in the process of stretching of pulse-loaded dispersive liquid media 
(emulsions and dispersions), failure (fragmentation) of the medium is preceded by a stage of unrestricted 
growth of cavitational bubbles at low concentrations of the disperse phase or by the growth of pores in highly 
concentrated suspensions (pastes). Therefore a mathematical model of pulsed destruction of dispersive liquid 
media should also take into account the development of the cavitation process, which is associated with great 
difficulties because the known mathematical models of bubble suspensions [2-4] are valid only for low-viscosoty 
liquid matrices in the range of low concentrations of bubbles s0 without regard for their interaction. And 
according to [5, 6], even for low-viscosity liquids such as water, as s0 increases, so does the relaxation time 
of shear stresses in a bubble medium 10, so that ~0 = A0 (a0)/)~0 (s0 = 0) ~ 104 holds even at s0 = 0.8, 
and the medium acquires viscoelastic properties. But all concentrated emulsions and suspensions (including 
those with low-viscosity matrices) have sufficiently long relaxation times of shear stresses A0 for emulsions 
and A ~ for suspensions even in the initial state at s0 = 0 [1], i.e., before the process of medium extension 
starts. Hence, as s0 grows, A0 and )~0 must increase, and the media being stretched must acquire ever more 
expressed elastic properties. 

Thus, in a mathematical  model of the dynamic destruction of dispersive liquid media it is essential 
to take into account the evolution of their viscoelastic properties in the process of media morphology 
transformation connected with cavitation processes. In the present paper a macrorheological approach is used 
to create a physico-mathematical model of the process under study. Within the framework of this approach 
an attempt was made to build a mechanical model of cavitating dispersive liquid media (DLM) which holds in 
the range of s0 from zero to values corresponding to the formation of cellular structures in a disperse medium 
(s0 > 0.9), and to discuss the problem of the effect exerted by the cavitational bubbles present in DLM on 
its viscoelastic properties. 

1. To build a rheological model that cavitates with monotonic stretching of DLM, it is necessary to 
analyze the evolution of the medium's morphology in the stretching process and to create a mechanical model 
that is adequate at every stage of the process. 

Let #0 be the effective shearing viscosity of a medium, and G1 and #1, respectively, the shear elastic 
modulus and the shear viscosity of the disperse phase (solid in suspensions and liquid in emulsions). If, 
before the DLM is stretched, it contains no bubbles with accuracy to cavitation nuclei, i.e., s0 ~ 0, then 
this medium can be described by a mechanical model generally accepted in rheology [7] (Fig. la), i.e., by 
connecting in series viscous element #0 corresponding to the medium's fluidity with the Voigt node GII#I, 
which represents a parallel connection of viscous element #1 with elastic element G1 and corresponds to the 
viscoelastic properties of dispersed elements with nonzero compressibility. 

The flow of a liquid matrix is accompanied by deformation of the dispersed elements (in an emulsion 
the shear elasticity of droplets is determined by the interfacial tension on the interface of the droplet and 
the matrix). According to this mechanical scheme, in view of the series connection of viscous element #0 and 
node GI[#I, the strains of the liquid matrix and of the viscoelastic dispersed elements are added up, while 
the stresses in the matrix and those in the dispersed elements are equal. 
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If a tensile stress is applied to such a medium, then in this medium, as has been noted, cavitation 
bubbles or pores begin to grow out of cavitation nuclei contained in the liquid matrix and at the interface 
with the disperse phase, and in the medium there appear dispersed elements that are new in phase. And 
since bubbles introduce additional viscosity and elasticity into the medium (due to the elasticity of their 
form), the mechanical scheme of the medium must be supplemented by a second Voigt node #2[G2 (Fig. lb) 
corresponding to the viscoelastic properties of bubbles. 

But if a0 reaches and then exceeds the concentration of the boundary packing of bubbles a0., then the 
medium must enter a qualitatively new rheological state. Indeed, at a0 = a0. all bubbles come into contact 
with one another, and further, at a0 > a0., due to their consolidation the medium loses its property of fluidity, 
at least under small shear strains, and becomes into a foamy frame. According to [8], the static shear modulus 
of dry foam (a0 > 0.95) can be estimated by the formula G ~- crS0/3, where o" is the surface tension coefficient 
of the matrix liquid and So is the specific area of the foam cells (in the case of a water matrix for dry foam 
G "~ 102 Pa). 

In order to have a clearer idea of the theological cha.racteristics of a disperse medium at c~0 > 0.9, i.e., 
when cells of a foamy structure begin to be formed in this medium, let us analyze the results of the work 
reported in [9], where a theoretical model was used to study the behavior of stationary dry foams (having a 
homogeneous liquid matrix) under shear strains. If a simple shear tension r is instantaneously applied to a 
sample of dry foam with cells of a hexagonal structure (Fig. 2a; the control cells are marked with hatching 
and dots), then the medium will behave as follows (Figs. 2 and 3 are borrowed from [9]). At first (at r = 0) 
the medium has a honeycomb structure with energetically stable trihedral Plato nodes (Fig. 2a'). Further, as 
r increases to take the values corresponding to marks 2 and 3 in Fig. 3a, there occurs an elastic shear strain 
of the cells, as shown in Figs. 2b and 3 (in Fig. 3 ~ is the shear strain). Finally, when r reaches a certain 
threshold value (T = r*), there occurs a coalescence of cells to form electrically unstable cells (Fig. 2d) with 
tetrahedra! Plato nodes (Fig. 2d'). If in this case the capillary number Ca = v/3(1 - s0)#oa~/4o" (a is the 
characteristic size of the cells) is less than the threshold value Ca* ,~ 2.7.10-7,  then, as shown in Figs. 2 and 
3a, where Ca = 10 -v, c~0 = 0.98, the system spontaneously enters a state with a lower level of free energy. 
This state is reached by restructuring the system morphology so that hexagonal cells with trihedral Plato 
nodes are formed again (Fig. 2e). The process is accompanied by load relieving: the stress drops to a value 
somewhat lower than zero (Fig. 3a, point 5). Owing to this there occurs a relative shear in the cells marked 
by hatching (Fig. 2a -* Fig. 2e). With further cell stretching the process is repeated (Fig. 3a), i.e., the graph 
of r (~) is periodic in character. 

But if Ca > Ca*, then, according to the data of [9], the pulsations in the graph of r (~) are smoothed 
(Fig. 3b,c). This is due to the fact that in the process of shear straining of cells at Ca > Ca" there occurs no 
coalescence of their boundaries or restoration of their hexagonal shape with trihedral Plato nodes, as opposed 
to the cases when Ca < Ca* (Fig. 2d,e). To put it differently, at Ca > Ca* there occurs continuous relative 
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shifting of cells resembling the plastic strain in metals when the tangential stress exceeds the static limit of 
fluidity, and in the medium there occurs above-harrier slipping of dislocations. 

Thus, a detailed analysis of the result obtained in [9] makes it possible to draw the following conclusion. 
If in a liquid medium which is being stretched the concentration of cavitation bubbles a0 > 0.9, then at shear 
stresses less than the critical value of r* the medium loses its property of fluidity: there occurs a peculiar 
kind of cell consolidation in the liquid matrix, and the medium behaves like a solid frame. But if r > r* then, 
because of relative shifting of the cells (Fig. 3), the medium enters a plastofluid state similar to that of a 
Bingham body. 

With regard to the above analysis, the mechanical model of a DLM (emulsion or suspension) (Fig. lb) 
in which, due to its stretching, the cavitational bubbles grow monotonically to reach the state of a foamy 
structure (a0 > 0.9), should be supplemented by a plastofluid St. Venant element [7] connected in parallel 
with viscous element #0 (Fig. lc). At shear stresses smaller than r*, this medium possesses a property of 
a solid: element SV of the scheme blocks the fluidity of viscous element #0, and the mechanical model is 
reduced to the scheme presented in Fig. ld. If the shear stress exceeds r*, then the medium's structure, i.e., 
its "rigid frame" of foam is destroyed (element #0 is unblocked), and the medium behaves like a viscoelastic 
flowing liquid body (Fig. lb).  In this case the liquid matrix elasticity at real shear strain rates is not taken 
into account. 

In its final form (Fig. lc) the mechanical model operates as follows. In their initial state the cavitational 
nuclei, due to their small sizes (10-3-10 -4 cm), can be considered unstrained (in the sense of shear strains), i.e., 
at a0 ~ 0 G2 ~ oc and in the general model of the medium (Fig. lc) the node/z21G2 can be disregarded. In 
this case clearly the medium possesses the property of fluidity at any r,  i.e., due to the absence of bubbles the 
St. Venant limiting stress r* for the medium is equal to zero, and the mechanical model of Fig. lc degenerates 
into a model of an Oldroyd body (Fig. la), whose theological characteristics depend on the concentration and 
the viscoelastic properties of dispersed elements. 

With increasing ao, G2 decreases, which initiates the node #21G2 in the mechanical model (Fig. lb). 
After a0 reaches the value of the boundary packing of bubbles s0, ,  at s0 > s0,  the bubbles begin to come 
into mutual contact, i.e., to form a foamy nuclear frame [1] and block the medium's fluidity under small shear 
stresses. But if r exceeds the threshold stress r*, which, as can be concluded from Fig. 3, depends on s0, 
then the medium restores its plastofluid property via cell shifting. Accordingly, in the mechanical model of 
the medium at s0 > s0,  there appears a St. Venant element SV (Fig. lc) controlling the limiting shear stress 
(blocking the medium's fluidity) by the law 

0 at c~0 < c~0,, 
7"* (s0) = f ( s 0 )  at c~0 ~> c~0,. (1.1) 

2. Using the mechanical model of a cavitating DLM, one can derive (by the methods of theoretical 
rheology [7, 10]) a rheological equation relating, in a differential form, stresses to strains via the main 
rheological constants of the medium, i.e., at #i = const, Gi = const for any fixed volume concentration 
of bubbles s0. 
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Let Pij and dij be the tensors of the medium's stresses and strains, respectively, and crij and eij, the 
deviators of these tensors. Then,  since the mechanical model of the medium (Fig. lc) represents a series 
connection of three two-element nodes (#0[SV,/~IIG~, and ~21G2), the resulting strain tensor deviator eij is 

0 of the node/~01SV, e~j of the node /~IGz ,  and e~ of the equal to the sum of the strain tensor deviators: eij 
node #zIG2. In this case the stress tensor deviator o'ij wilt be the same for all the three nodes. In the case 
of the mechanical model of a Bingham body, by definition [7, 10], if the generalized shear stress (tangential 
stress intensity) ri = [(1/2)~rijalj] ~/2 is less than O, then the body will be absolutely solid, i.e., e# = 0. But 
if 7", = O, then in the medium there occurs a plastoviscous flow. Since in the node #0]SV the stress tensor 
deviators in parallel branches of the St. Venant plastofluid element and of the viscous Newtonian liquid add 
up together, the resulting stress tensor deviator of this node is written in the form 

crij = 2r/,~j + 2#0ai ~  (2.1) 

where 77, (effective viscosity coefficient of the SV viscoplastic element) is a scalar variable [7]. 
Similarly, for nodes #x]Gz and #2[G2 containing elastic (Hookian) and viscous (Newtonian) elements 

connected in parallel the following can be written accordingly 

~rij = 2Gletij + 2#le'ij (2.2) 

and 

"" (2.3) ~,r = 2G2e'i~ + 2 m % .  

Since, according to the mechanical model of the medium (Fig. lc), 

eij = ei 0 -1- e;j + e'i~ , (2.4) 

we rewrite (2.1)-(2.3) in operator form, subst i tute the values of their ei ~ e;j, and e;~ into (2.4), and obtain 

6riJ O'iJ -}- O'iJ (2 .5)  

~ + 
or, after transformation, 

G1G20"O + [G1#2 + G2#l + G2#o + Gl#o + (G1 + G2) 77.] o'ij + [#1#2 + #o/-t2 +/~0#1 + (#I +/z2) 7/.] o'ij 

=2G1G2(#o+r l , ) e i j++2[I .Zo#2Gl+#o# lG2+(# lG2+#2G1)r l , ] e i j+2g l#2(#o+r l , ) ' e ' i j .  (2.6) 

Considering that ,  according to the principle of passage of a plastic SV element through a limiting shear 
stress O, a viscous element connected in parallel with this plastic element does not prevent the plastic element 
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from reaching the value 19 [10], and assuming that in (2.6) #0 = 0, we have 

{2 [G1G2~ij + (/ziG1 + #2G2) gii + #1#2 "e'O] - (G1 + G2) ~iS - (#1 + #2) 5ij}~. 

= G1G2~rij + (Gl#2 + G2#l)&ij + #1#20"ij. (2.7) 

According to the Mises equation [11], plastic strains in a plastically strained body appear when the generalized 
tangential shear stress reaches the limiting value 

(1 -~1/2 
= t,7  jo j) = o .  (2.s) 

If we multiply (2.7) by c~j and substitute ~j~r~./= 202 from (2.8) into (2.7), then, taking into account that 
O (a0 = const) = const and, hence, according to (2.8), crijdrij = 0, we have 

{2 [ G I G 2 g i j  -4- (#1G2 -b #2G1)  eij  -4- #1#2 "r o'ij - (/21 + #2) (r i jo ' i j}r l ,  = 2@2GIG2 + #ltZ2grijo' i j .  (2.9) 

Further, since o'ijdrij = 0, t h e n  o'ij~rij ~- d (crii&ij)/dt- crijdrij = - o ' i j o ' i j ,  so o'ijo'ij~rij --~ - (o ' i j d r i j  ) o'ij ~- 
0. Taking this into account and multiplying (2.9) by o'ij we obtain 

02 (2.10) 
~* = [~ij + ( i l  + i2) ~j + i~12 ~ij] crij' 

where A1 = #I/G1, i2 = #2/G2 are the characteristic temporal parameters of the medium. Dividing (2.6) 
by G1G2, solving this equation for 7/,, substituting into it Eq. (2.10) for r/,, and regrouping the terms we 
obtain a rheological equation for a DLM containing cavitation bubbles in the range of fixed concentrations 
from cavitation nuclei to a cellular solidlike structure: 

[ (, 1)] [ 

r -t- I. ~ij' n t- (11 -a t- i 2 )  ~ij -t- i l i 2  "e'ij O'ij 

As noted earlier, this equation holds on the condition that all of its coefficients (#0, #1, #2, G1, G2, 
and (9) are time-independent. This can be the case only when in the process of straining a0 remains constant. 
(The values of the volume concentration of bubbles al and solid particles a2, with the mass of the medium 
remaining the same, will always be constant.) But since the strain tensor deviator eij contains only a change 
in the shape of the medium with its volume remaining constant, Eq. (2.11) describes the medium's strain 
process without any changes in a0, and, hence, with strains described by Eq. (2.11), the rheological coefficients 
remain constant. 

Equation (2.11) can be reduced to an equation for purely shear strains: 

T+ i 1 + i 2 + . 0  e +  i , i 2+ .0  

+i. -1  7 (2.12) 

Here r* meets condition (1.1); r and e are the stress and the strain of a pure shear, respectively; the dependence 
r ~ = f (a0 > a0.) can be determined experimentally. 

It should be noted that in the case of suspensions, for G1 and #0 to be independent of the medium's 
strain rate, the value of a2, according to [12], should not exceed 0.35. In the case of emulsions no dependence 
of #0 or G1 on the medium strain rate is observed at any value of a l  [13]. The dependence of #2 and G2 on 
the strain rate requires special experimental research. Therefore we will further assume the shear strain rate 
in media with a0 > 0 to be sufficiently low. 
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3. Consider some partial solutions of Eq. (2.12) making it possible to analyze the reaction of DLM to 
various disturbances of its state. 

3.1. Let the volume concentration of bubbles a0 > a0,, and let them form in the medium a cellular 
frame, i.e., r* > 0 (Fig. lc). To conveniently analyze the behaviol of the medium under study, here and 
further we will use, as is the convention in rheology, a step disturbance: 
with shear stress 

r(t)=ro[U(t)], [ U ( t ) ] = {  0,1, t<0,t)0 (3.1) 

or with shear strain 

e (t) -- eo [U (t)], [U( t ) ] -={  0,1, tt~>0. < 0 '  (3.2) 

(A) The case when r = 7"o [U (t)] > r*: a structured DLM possesses plastic-viscoelastic properties, and 
Eq. (2.12) is reduced to the form 

X2 l i ( rJ'~ ro 
" g + - - g +  = 1 -  (3.3) 

,o  2 ) 

where ~e2 = i l i 2 ;  12 = i l  + A2. 
Under the initial conditions e (t = 0) = co, g (t = 0) = co, and g (t = 0) = go Eq. (3.3) has a general 

solution 

e ( t ) =  r  1 To ~ r0 - - - 4 -  + 1 -  ~ t  ) 

+ (1:  e - ' i x :  _ 1,  e - ' i x , )  {go - (1 -  -o/vo] e - ' i x :  _ 11 e - ' iX , ) .  (3.4) 
i i  - -  i2 -[- i l  - -  i2 

Here the second term on the right-hand side [i.e., (1 - v*2/To)r0t/t~0 ] is a result of the medium's fluidity 
(mutual "slipping" of cells, Figs. 2 and 3), which is the greater, the greater the ratio T0/T* and the smaller the 
effective viscosity #0; the third and the fourth terms on the right-hand side describe the process of the elastic 
strain delay of a DLM with relaxation times i l  and i2. The strain lags are due to the presence in the medium 
of elastic solid-disperse elements or droplets ( i l )  and bubbles or cells (i2). Consequently; according to (3.4), 
at v0 - r* ---+ +0 the intensity of plastic-viscous flow is completely damped,  and the medium degenerates into 
a viscoelastic Voigt body (Fig. ld). 

(B) If 7 < r*, then element SV of node SV[#0 is, by definition, absolutely solid, it blocks the element 
t0 corresponding to a viscous flow, and the medium loses its property of fluidity and is converted into a 
viscoelastic "solidlike" generalized Voigt body (Fig. ld), i.e., a rigid cellular frame. But if a pure shear stress 
~-0 < r* is applied to this medium, then, in view of the uniformity of nodes #1 [G1 and #2 [G2, the shear strains 
in them will add up, and at e0 = 0, g0 = 0 the total shear strain, according to [14], will have the form 

(t) ---- TO [J1 (1 - -  e -t/X1) + J2 (1 - -  e-ffX2)], (3.5) 

where Ji = 1/Gi (i = 1, 2) is the shear compliance. Thus, in the medium the shear strain will grow with a 
lag characterized by constant times i l  and i2 dependent on the viscoelastic properties of the solid particles 
or droplets ( i t )  and bubbles or cells (i2). According to (3.5), e (t) ~ r0 (J1 + -/2) for t ~ e~. 

(C) Let e (t) = e0 [U (t)], where e0 < r* (J1 + J2) is the instantaneous strain of the DLM under 
conditions (3.2). Since in this case element SV remains absolutely solid by definition, we assume that in (2.5) 
q, ~ e~ and obtain 
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and (2.12) reduces to the form 

# 1 + # 2 §  + r = ~ 2 g + A 2 ~ + c ,  
G~ Ge 

or, since e (t) = eo [U (t)], 

G1 + G2 G1G2 
++ - - r =  --r 

#I -F #2 tZl -F #2 

The solution of this equat ion  is exponential  in character: 

" ~ 0  (i -- e- t / i ) .  (3.6) r = roe -t/~ + Ji + J2 

Here A = (#1 + #2)/(G~ + G2) is the relaxation t ime of shear stress in the DLM, which is dependent  on 
the rheological parameters  of bo th  the dispersed elements and the bubbles.  But  if the dispersed elements are 
absolutely solid, i.e., G1 ---+ co, then from (3.6) we have r = G2e0; in this case the DLM behaves like an elastic 
Hooke body. 

3.2. The volume concentrat ion of bubbles  a0 < a0. ,  i.e., according to (1.1), r* -- 0: the DLM is a fluid 
medium under any shear stress, and (2.12) reduces to the form 

r + At§ + ~eli: = #0 (e + A2g + ~2 ~), (3.7) 

where ,kl = (#0 + #1)/G1 + (#o + #2)/G2; ~el = (#0#1 + #0#2 + #l#2)/GIG2. 
Consider two modes  of d is turbance of such a medium. 
(A) If r = r0 [U (t)], then (3.7) reduces to the form 

.g + A 2 g +  1 / _  r0 

~2 #0~e2 

and under the initial condit ions z (t -- 0) = e0, ~ (t = 0) = e'0, and g (t = 0) = go it has the solution 

c (t) = (co + ~2go + ~ o  - ~2 ~ o )  + 2 ~ _ i~  (12~o + go - ~o) - 
~o #o i l  - i2  e-tl:~l + 

i~(ile0 + 4 -  ~o) 
i l  -- i2  e -t/A2. (3.8) 

Hence it follows that  on loading a DLM containing a fixed concentrat ion of unconsolidated bubbles  (a0 < a0.)  
with dis turbance (3.1) the medium's  shear strain will be determined by the medium's  fluidity (the term rot/#o), 
which is more intense than in case (A) of Section 3.1, as well as by the elastic strain lag due to the presence 
in the medium of dispersed elements and bubbles  [the third and forth terms on the right-hand side of (3.8)]. 
The lag times i l  and i2 are determined by the rheological constants  of the disperse phase (#1, G1) and of the 
bubbles  (#2, G2). 

(B) Let e = c0 [U (t)]. Subst i tu t ing this function into (3.7) we obtain the equat ion 

A1 1 
f+--§ 

the solution of which for T (t = 0) = r0 and § (t = 0) = § has the form 

r ( t )  = 1 + + § e -tl)'l - ( ~  - 1 + 4"0 , (3.9) 

where 

Using (3.10) we can show that  

~2 = 2 ~ 1 / ~ 1 ,  ~1 = ~2/(1 - ~1), ~1-- ~2/(1  + ~1). (3.1o) 

+ ;, J + ]  (3.11) 
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Here 

At = /z0 + #I , #0 + #2 ~el 2~1 al  ' A x -  <1'  <1.  (3.12) 

From (3.9) it follows that in a DLM containing unconsolidated bubbles under disturbances of the (3.2) type 

shear stresses relax according to an exponential law with constant relaxation times A1 and A1 dependent on 
the rheological constants of the liquid phase, disperse phase, and bubbles. 

If a0 --* 0 on retention of a countable concentration of bubbles, then, as noted earlier, G2 --* oc, so 
~ex --~ 0, ~2 "~ 0, A2 ---* A1, A1 ~ A~, and (3.7) reduces to the Oldroyd equation [14] 

r + At§ = #0 (i + Ale), (3.13) 

which describes the theological properties of emulsions and suspensions. It can readily be verified that G2 ---* 
cx~ for a0 --~ 0, and solutions (3.8) and (3.9) of Eq. (3.7) for a DLM with bubbles also degenerate into 
corresponding solutions of Eq. (3.13): 

e(t)  eo+ rot  A1 (7"~ io)(1 e -t/A1) r(t)  ^ -t/A~ 
~ _  . . . . .  , ~ T O < . ,  . 

#0 #0 

Since in solution (3.9) A1 >A1, the second term on its right-hand side decreases with time faster than the first 
term, and thus the character of the relaxation r will be determined by the time constant A1. And according 
to (3.11) A~ > A~; hence, if bubbles with a volume concentration of bubbles a0 are introduced into a DLM 
(suspension or emulsion), then the relaxation time of shear stresses in the medium exceeds the corresponding 
relaxation time in a pure emulsion or suspension. According to [6], the greater a0, the greater #2 and the 
smaller G2, and, hence, there is an increase in A~, and, according to (3.11), of A~/A~, i.e., the memory of the 
medium is retained longer and its elastic properties must manifest themselves more markedly. 

Thus, in the present paper a part of the problem of building a theological model of a cavitating DLM 
has been solved. A mechanical model has been constructed of a stretched DLM with unlimited growth of 
cavitation bubbles from the dimensions of nuclei to those of the forming hexagonal cellular structure. A 
rheological equation in a differential form has been derived describing the relation between shear stresses 
and strains in a DLM with a fixed volume concentration of cavitation bubbles within the whole range of its 
realization. 

A rheological equation corresponding to the volume stretching of a DLM, i.e., to the case of a 
monotonically growing volume concentration of cavitation bubbles a0 must contain rheological coefficients 
dependent on a0 (t) and on the strain rate. But for these coefficients to be determined, special experimental 
techniques have to be developed. 

This work was supported by the Russian Foundation for Fundamental Research (Grant 93-013-16383). 
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